Oxidation – Reduction Titrations

Prepration and Standarization of 0.1N KMnO4 Solution

<u>Aim</u>: To determine the concentration Normality of Potassium Permanganate (KMnO₄) solution by titrating is against a 0.1N standard solution of oxalic acid (H₂C₂O₄).

Titration of Potassium Permanganate with Oxalic Acid is a type of redox titration .

KMnO₄ is an oxidizing agent which works in acidic medium more strongly than alkaline medium .Its oxidizing action can be represented by following reaction in an acidic medium

 $MnO^{-}4 + 8H^{+} + 5e^{-} \longrightarrow Mn^{+2} + 4H_2O$

In acidic medium ,the equivalent weight of Permanganate is equal to 1/5 of its molecular weight,that is KMnO4 accepted 5 electrons.

Equivalent Weight of Permanganate = $\frac{158.03}{5}$ =31.61 gm

We use sulphuric acid (H₂SO₄) in this titration with KMnO₄ .The solution which contain MnO₄ ion in it is purple in color.While the solution containing Mn⁺² ions is pink .Thus,Potassium Permanganate when reacts with a reducing agent it works as self indicator also.

In this experiment,Oxalic Acid acts as a reducing agent and KMnO4 is taken in an acidic medium of H₂SO₄ . So, there is no need of indicator as Potassium Permanganate will act as self-indicator.

Oxidation Half reaction:

5H₂C₂O₄+5[O] -----> 5H₂O+10CO₂

 $C_2O_4-2e \longrightarrow 2CO_2$

By multiplying the oxidation equation for oxalic acid by 5 and the equation for permanganate reduction by 2 and adding the two equations:

5C₂O₄-10e → 2CO₂

 $2MnO^{-}_{4}+16H^{+}+10e \longrightarrow 2Mn^{+2}+4H_{2}O$ $5C_{2}O_{4}+2MnO^{-}+16H^{+} \rightarrow 2CO_{2}+2Mn^{+2}+4H_{2}O$

Overall Reaction:

This is titration cannot be carried in the presence of acids like nitric acid or HCl because itself is an oxidising agent.

 $N \times V = N \times V$

H₂C₂O₄ KMnO₄

